

Fingerprint Identification Terminals

» F22

Ultrathin Fingerprint Access Control & Time Attendance terminal

- Wi-Fi Communication
- Reduced size
- BioID Sensor

Display: 2.8-inch TFT color Display Fingerprint Capacity: 3,000 (1:N) ID Card Capacity: 5,000 (Optional) Sensor: BioID Sensor / Silk ID Sensor Communication: RS485, TCP/IP, USB-host, Wi-Fi Dimensions: 159,8 x 80,7 x 19,4

F22 is one of the smallest Access Control terminals on the market. With 16 cm high by 8 wide, the F22 is the perfect solution for installations of maximum exigency in confined spaces.

With a minimalist design in white or black colors, the F22 incorporates the new BioID algorithm that offers superior performance in fingerprint identification. It has Wi-Fi wireless communication as well as access control interfaces for connecting external readers, offering full connectivity in any environment. F22 arrives where no one arrives.

» SF420

IP Based Fingerprint Access Control & Time Attendance

SF420 is an IP based fingerprint terminals with 1,500 fingerprint capacity, which operate in both network mode and standalone mode. It can connect with NT Access 3.5 software for access control and time attendance management.

Fingerprint Capacity	1,500 (1:N)
Card Capacity(Optional)	5,000
RF Card	EM/Mifare
Record Capacity	80,000
Display	2.8 inch resistive touch screen
Communication	TCP/IP, RS485, USB Host
Standard Functions	Access control interface for electric lock, door sensor, exit button, alarm, doorbell.
Wiegand Signal	Input and Output
Dimension	105 × 105 × 32mm

MultiBio 800

Multi-biometric Access Control and Time Attendance Terminal

MultiBio 800 with Face, Fingerprint recognition and optional with RFID mode is applicable to high level access control application.

	MultiBio 800	MultiBio 800-H
Face Capacity	400 (1:N)	1500 (1:N)/4000(1:1)
Fingerprint Capacity	1000 (1:N)	4000 (1:N)
Card Capacity (Optional)	1,000	10,000
Record Capacity		100,000
Display	2.8 in	ch TFT screen
Communication	RS485, T	CP/IP,USB -Host
Standard Functions	Access control interface for electric lo	ock, door sensor, exit button, alarm, doorbell.
Wiegand Signal	Inpu	t and Output
Auxiliary terminal:	1ea input for linkage function	
Power Supply	C	DC12V 3A
Operating Temp.	0 °C- 45 °C 20%-80% 187.87mm×87.7mm×62.51mm Standalone SDK	
Operating Humidity		
Dimension		
SDK		

In a continuously expanding security environment, NT Access offers state of the art waterproof, antivandalic access control terminals.

The range features infrared fingerprint sensors, proximity and PIN ID, external door relays, voice prompt etc...NT Access's outdoor terminals allow complete integration in a buildings access control network.

TF1600

TF1700

	IP65 Waterproof	Casing	IP65 Waterproof	
	Pull SDK	Communication Protocol	Standalone SDK	
	3.000	Fingerprint Capacity	3.000	
	30.000	Card Capacity	10.000	
	10.000	Log Capacity	50.000	
	TCP/IP, RS485	Communication	TCP/IP, RS485, USB-host	
	Input and Output	Wiegand	Input and Output	
	Electric Lock, Door Sensor, Exit Button, Alarm	Access Control Interface	Electric Lock, Door Sensor, Exit Button, Alarm, Door Bell	
	Low temperature sensor	Special features	Optional 8000 FP (Pull SDK)	

MA500

casing Pull SDK 3.000 30.000 100.000 TCP/IP, RS485 Output

IP65 Waterproof Metal

Casing	
Communication Protocol	
Fingerprint Capacity	
Card Capacity	
Log Capacity	
Communication	
Wiegand	

Electric Lock, Door Sensor, Exit Button, Alarm Access Control Interface

MA300

IP65 Waterproof Metal casing
Standalone SDK
1.500
10.000
100.000
TCP/IP, RS485, USB-host
Input and Output

Electric Lock, Door Sensor Exit Button, Alarm

KFID Identification Terminals

SC700 TFT RFID Access Control terminal

Display	3"TFT Touch Screen
Card Capacity	30,000
Communication	TCP/IP, USB-Host
Standard Functions	Access control interface for electric lock, door sensor, exit button, alarm.
Wiegand Signal	Input and Output

SCR100

RFID Access Control terminal

Card Capacity	30.000 Cards
RF Card	EM(standard)/Mifare(optional)
Communication	TCP/IP, RS485/232, USB-host
Wiegand	Input and Output
Standard Functions	Access control interface for electric lock, door sensor, exit button, alarm

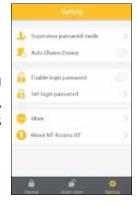
DF Series RFID Access Control keypads

Case	Metal Casing with IP65
Card Capacity	1.000 Cards
RF Card	EM(standard)/Mifare(optional)
Password Capacity	1.000
Standard Functions	Access control interface for electric lock, door sensor, exit button, alarm, doorbell.

NT Access BT

Newest Bluetooth Access Control APPS Mobile Apps for you to wirelessly manage your doors

Mobile phone requirement for APP installation:


Android OS later than version 4.3, compliant with the Bluetooth protocol later than 4.0; iOS later than 7.1, devices later than iPhone 4S

Remote User Registration Easy User Registration though Bluetooth Connection

Wireless Door Setting

Both Open Time and Door Sensor, can seamlessly control in your hands

One interaction

A CONTRACTOR OF	
Device type MA200	
Manufacturer NY Access	
Firmware version. vivr 6.63 Apr 1 2016	١
Production date 2016-00-20 11 04:38	E
Used fingerprint capacity/Total capacity 5./ 1000	S
Used card capacity/Total card capacity 4./ 10000	
Used user capacity/Total user capacity 1857/10000	
and the second se	

View Device information

Easily check out all the devices' basic information, such as available storage and usage information.

MA300-BT

Newest Bluetooth Access Control Terminal

Waterproof, Metallic Casing & NT Access BT Apps Ready

Fingerprint Capacity	1,500 templates	
ID Card Capacity	10,000	
Transaction Capacity	10,000	
Communication	Rs485, TCP/IP, USB-host, bluetooth	
Access Control Interfaces for	3rd part electric lock, door sensor, exit button, alarm	
Wiegand Signal	Input & Output	
Standard Access Control	RS485 Reader, TimeZone, Group	
Function	Multi-identification Duress mode, Anti-passback	
Optional Function	Mifare, external USB keypad	
Protection Grade	IP65	
Dimensions(W x H x D)	73 x 148 x 34.5mm	

X8-BT

Newest Bluetooth Access Control Terminal

Compact Size, Economic, NT Access BT Apps Ready

Fingerprint Capacity	500 templates 500 SilkID Sensor	
ID Card Capacity		
Sensor		
Communication	Bluetooth	
Access Control	3rd part electric lock, door sensor	
interface	Exit Button, Alarm, Door Bell	
Standard Function	Simple access control Function, ID card	
Optional Function	Mifare Card	
Software	NT Access APP	
Dimensions(W x H x D)	101.5 x 101.5 x 37mm	

Tripod Turnstile

Tripod turnstiles are compact and cost-effective entrance solutions designed for smooth and silent operation, less wear and tear and reduced power consumption, suitable for areas where there is a large flow of people.

The TS2033S offers a slim, two-legged casework made of stainless steel, ideal for sites where large flows of people and space are issues.

On receiving a signal from the access control system, or push button, it allows the passage of one person at a time. The status is shown on the led-way mode indicators on the top. Passage in both directions is electronically controlled. Default mode is to lock the mechanism until a valid authorization signal is received. If you want to set one side free, you can have it by adjusting the mechanism.

Led way mode indicators included as standard.

Full Height Barrier

The FHT series provide bi-directional access control in conjunction with access control system or any device that can provide a dry contact output (such as a push button). It is designed for both indoor and outdoor using.

Parking Barrier

The parking barrier prevents unauthorized vehicles entering restricted area, and its boom can be raised by the remote control, access control system, and long-distance reader. If a loop detector is installed, impact can be avoided. The boom will be automatically lowered after the vehicle passes through the gate; otherwise, the boom can be lowered manually by using a remote controller or press button. The parking barrier can be equipped with photo cell. When people / vehicle obscure the infrared launched from photo cell, boom will be stopped and then raised during lowering. After people / vehicle leave, the boom will be automatically lowered. With the Boom illuminator system, light turns green when boom is raised and turns red when boom is lowered. It helps the driver to determine the position of boom and avoid hitting the boom.

Centralized administration and web-based infrastructures reduce a company's IT costs and allows an easy management of all access points from one single location. For this purpose, NT Access offers a whole range of access control panels, that can manage from 1 to 4 doors using either or both proximity and fingerprint identification.

RFID Access Controllers

	C3-100	C3-200	C3-400
Card Capacity:	30.000	30.000	30.000
Event Capacity:	100.000	100.000	100.000
Communication:	TCP/IP, RS485	TCP/IP, RS485	TCP/IP, RS485
Wiegand Input:	2ea	4ea	4ea
Aux.output:	1ea	2ea	4ea
Aux.input:	none	2ea	4ea

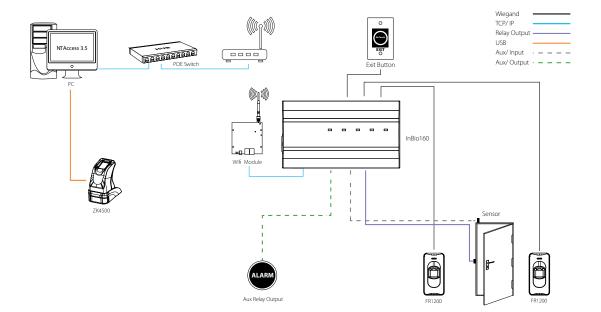
RFID & Fingerprint Access Controllers

	inBIO160	inBIO260	inBIO460
Card Capacity:	30.000	30.000	30.000
Fingerprint Capacity:	3.000 (optional 20.000)	3.000 (optional 20.000)	3.000 (optional 20.000)
Event Capacity:	100.000	100.000	100.000
Communication:	TCP/IP, RS485	TCP/IP, RS485	TCP/IP, RS485
Wiegand Input:	2ea	4ea	4ea
Aux.output:	1ea	2ea	4ea
Aux.input:	1ea	2ea	4ea
Aux:	RS485 for Fingerprint Reader	RS485 for Fingerprint Reader	RS485 for Fingerprint Reader

NEW

InBio & C3 Wifi Bundle

Newest Wifi Biometric Access Control Panel Perfect Choice for Old Building Renovation



C3 Wifi Bundle Specification

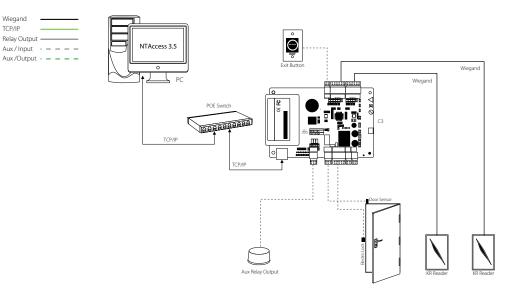
es min banaie speei	lication		
	C3-100-WF	C3-200-WF	C3-400-WF
Number of Doors Controlled	1 Door	2 Door	4 Door
Number of Readers Supported	2	4	4
Wifi Module	Y	Y	Y
Types of Readers	26-bit Wiegand,	26-bit Wiegand,	26-bit Wiegand,
Supported	other upon request	other upon request	other upon request
Number of Inputs	2 (Exit Device and Door Status)	6 (2 Exit Device and 2 Door Status, 2 AUX))	12 (4 Exit Device and 4 Door Status, 4 AUX))
	2 (1-Form C Relay for Lock and	4 (2-Form C Relay for Lock and	8 (4-Form C Relay for Lock and
Number of Outputs	1-Form C Relay for Aux Output)	2-Form C Relay for Aux Output)	4-Form C Relay for Aux Output)
Card Holders Capacity	30,000	30,000	30,000
Log Events Capacity	100,000	100,000	100,000
Communication	TCP/IP and RS-485	TCP/IP and RS-485	TCP/IP and RS-485

InBio Wifi Bundle Specification

NEW InBio & C3 POE Bundle

Newest POE Biometric Access Control Panel Effectively Cutting Cable Installation Cost

.:e sti. C3-1


C3-100-POE Specification	
Number of Doors Controlled	1 Door
Number of Readers Supported	2
Aux. Output	1
Types of Readers Supported	26-bit Wiegand, other upon request
Number of Inputs	2 (Exit Device and Door Status)
Number of Outputs	2 (1-Form C Relay for Lock and 1-Form C Relay for Aux Output)
Weight	3.35kg
Dimensions (Bundle Only)	305.2mm x 298.4mm x 89mm
Dimensions (Board Only)	160mm x 106mm
User	30,000
Event Buffer	100,000 transactions
Communication	RS485, Ethernet
Nominal Voltage of C3-100	12v
Standby Current of C3-100	40mA
Operating Temp	0 °C - 45 °C
Operating Humidity	20% - 80%

InBio-160-POE Specification

mblo roo roc specification	
Number of Doors Controlled	1 Door
Number of Readers Supported	2
Aux. intput	1
Aux. Output	1
Types of Readers Supported	26-bit Wiegand, other upon request
Number of Inputs	2 (Exit Device and Door Status)
Number of Outputs	2 (1-Form C Relay for Lock and 1-Form C Relay for Aux Output
Weight	3.35kg
Dimensions (Bundle Only)	305.2mm x 298.4mm x 89mm
Dimensions (Board Only)	183mm x 106mm
User	30,000
Fingerprint	3,000
Event Buffer	100,000 transactions
Communication	RS485, Ethernet
Nominal Voltage of Inbio 160	12v
Standby Current of Inbio 160	50mA
Operating Temp	0 °C - 45 °C
Operating Humidity	20% - 80%

Wiegand TCP/IP Relay Output -

NT Access's wide range of external readers include waterproof IP65 rated fingerprint, proximity and password ID models, which allow you to connect indoor terminals and controllers with an outdoor access feature, connecting these directly by Wiegand or RS485.

Fingerprint Readers

FR1500 Embeddable Access Control reader

Case	Metal case. Waterproof Fingerprint cover (FR1500-WP)
Identification	Fingerprint
RF Card	125kHz Proximity card (Optional 13.56MHz Mifare)
Communication	RS485

FR1200

Waterproof Access Control reader

Case	IP65 Waterproof
Identification	Fingerprint
RF Card	125kHz Proximity card (Optional 13.56MHz Mifare)
Communication	RS485

KFID Readers

KR610 Series

	KR610			KR	611		KR612					
	E	E-RS	D	D-RS	E	E-RS	D	D-RS	E	E-RS	D	D-RS
Proximity	125	KHz	Mifare 1	3.56 MHz	EM 12	25 KHz	Mifare 13	3.56 MHz	EM 12	25 KHz	Mifare 1	3.56 MHz
Supported cards	E	M	Classic, DESFire, Plus, Ultralight, NFC. (only UID)	DESFire (UID and Encrypt- ed Ap- plication Data)	E	M	Classic, DESFire, Plus, Ultralight, NFC. (only UID)	DESFire (UID and Encrypt- ed Ap- plication Data)	E	Μ	Classic, DESFire, Plus, Ultralight, NFC. (only UID)	DESFire (UID and Encrypt- ed Ap- plication Data)
Read Range	Up to	10 cm	Up to	5 cm	Up to	10 cm	Up to	5 cm	Up to	9 8 cm	Up to	4.5 cm
Reading Time		≤300ms										
Input Port		External LED Control / External Buzzer Control										
Material	ABS+PC with texture											
Output Format	26/34 bits	26 bits	34/66 bits	Up to 66 bits	26/34 bits	26 bits	34/66 bits	Up to 66 bits	26/34 bits	26 bits	34/66 bits	Up to 66 bits
Power/Current	DC 6-14V / Max.70mA											
LED	Red and Green LEDs											
Operating Temperature		-20°C to 65°C(-10° to +70°C)										
Operating Humidity		10% to 90% relative humidity non-condensing										
Beeper						Y	es					
Index of Protection				IPe	65					IP	64	
Dimensions		75x116	x16 mm			86x86x	:16 mm			86x86x	20 mm	
Cable length					Standa	ard 35 cm (Optional 1	50 cm)				

»» KR702E/M

- Model: KR702E/KR702M
- Wiegand Signal: Wiegand 26; Wiegand 34
- Power Supply: 12V DC, <90mA
- Effective Distance: 0~8cm (depending on working conditions and cards)
- Read Time: <80ms
- Ingress Protection Rate: IP65
- Operating Frequency: 125KHz/13.56MHz
- Operating Temperature: 0 °C- 70 °C
- Operating Humidity: 20%-80%
- Dimension (LxWxH): 113x75x16mm

UHF Long Distance

WHF Slave Readers

Ultra-long Reading distance reader

Model	UHF 1-5	UHF 2-5	UHF 1-10	UHF 2-10		
Dimensions	260 X 260	260 X 260 X 65mm 4		445 x 445 x 70mm		
Reading distance	Up to 6 m (adjustable) U		Up to 12 m (adjustable)			
Communication interface	Wiegand 26 (Default) / Wiegand 34, USB		USB			
Frequency	902MHz-928MHz , 865MHz-868MH		Hz			
Shell material	I Die-casting aluminum shell, Antenna panel wi engineering plastics		anel with			
Interface protocol	EPC glc	bal UHF Class	1Gen 2/ISO 18	000-6с		
Multiple tags identification	>50					
Working mode	Alw	vays read (Defa	ault) / Trigger rea	ad		

» U1000/U2000

Ultra-long Reading distance Standalone terminals

U1000

- Card Capacity: 5,000 cards
- Transactions: 30,000
- Hardware Platform: ZMM220
- Working Frequency: F Series: 902Mhz-928MHz; E Series: 865MHz-868MHz
- Reading Distance: 0-6m (Stable is 0-5m)/ 0-12m (Stable is 0-10m)
- Communication: TCP/IP (connect access software) , USB (connect demo)
- Access Control Interface: 3rd Party Electric Lock, Door Sensor, Exit Button, Alarm, Wiegand In/Out

U2000

- Access Control Functions: Standard access functions, anti-passback
- Antenna Gain: 8dBi/12dBi
- Output Power: 18dBm-26dBm
- Support Software: NT Access 3.5, NT Access BioSecurity 3.0
- Power Supply: DC12V, 3A
- Working Temperature: -20°C-+60°C
- Working Humidity: <95% (25°C)
- Dimension: 250mm*250mm*70mm(±5)/ 445mm*445mm*70mm (±5)

↘ Accessories-Cards and Tags

125KHz HID proximity card

» TAG-03(Mifare S50)

• 13.56MHz Proximity TAG

- >>> TAG-03(Mifare S70)
- 13.56MHz Proximity TAG

- »> TAG-03(ID)(S50)
- 125KHz Proximity TAG

↘ Accessories-Exit Buttons

»» K2

- Non-touch Exit Sensor with Remote Key(Diffused Detection)
- NO NC COM relay output
- Size: 115L×70W(mm)

» K2S

- Non-touch Exit Sensor with Remote Key(Diffused Detection)
- NO NC COM relay output
- Size: 86L×86W(mm)

» K1-1D

- Non-touch/Touch free Exit Sensor (Diffused Detection)
- NO NC COM relay output
- Size: 86L×86W(mm)

>>> Remote KeyRemote control for K2/K2S

>>>> EX-800A
Size: 800A: 86L×50W×20T(mm)

>>>> EX-800BSize: 800A: 86L×86W×20T(mm)

>>>>	K1	-1

- Non-touch/Touch free Exit Sensor (Diffused Detection)
- NO NC COM relay output
- Size: 115L×70W(mm)

» EX-802

• Size: 802: 86L×86W×20T(mm)

» EX-801A

• Size: 801A: 91L×28W×20T(mm)

»> EX-801B

• Size: 800A: 86L×86W×20T(mm)

Accessories-Box and Cover

» Metal Box

 Metal Box for C3 Series control panel, including key,cables, iron plate etc

» Metal Box

• Metal Box for inBIO Series control panel, including LED indicator, key, cables, iron plate etc.

>>> WP01Protective Cover for TF1700/TF1600

Accessories-Power Supply

» PS901

- Power Supply without Battery Leads
- Input: 220V AC, 50Hz (110V optional)
- Output: 12V DC, 3A

» PS901B

- Power Supply with Battery Leads
- Input: 220V AC, 50Hz (110V optional)
- Output: 12V DC, 3A
- 12V 7Ah battery not included

» PS902

- Power Supply with Battery Leads
- Input: 220V AC, 50Hz (110V optional)
- Output: 12V DC, 3A

» PS902B

- Power Supply with Battery Leads
- Input: 220V AC, 50Hz (110V optional)
- Output: 12V DC, 3A
- 12V 7Ah battery not included

» TPM003B

- Spare parts for inBIO160 Package B
- Power supply for Controller with uninterrupted battery function
- Input: 110-240V AC, 50/60z
- Output: 13.8V/3A+1A

» Power Supply

- Plug to device: 90°, φ2.1mm
- Cable Length: 1.8m
- Output: 12V DC, 3A

» ZKPSM030B

- Spare parts for C3-100/200/400 Package B
- Power supply for Controller with uninterrupted battery function
- Input: 110-240V AC, 50/60z
- Output: 13.7V/3.5A+1A

» TPM005B

- Power Supply with Battery Leads
- Input: 220V AC, 50Hz (110V optional)
- Output: 12V DC, 3A

Software Management

New NT Access 3.5 Software

Our NT Access 3.5 is an Access Control software application that offers complete flexibility in programming to achieve any access control performance your solution may require.

The NT Access system goes a step beyond conventional access control systems, by combining unique RFID and biometric identification. With its intuitive easy-to-use GUI and wizard type settings, NT Access provides comprehensive access control security for small-to-medium sized businesses and enterprise-level systems.

Dar	Direct Directory
	Server Diene Kinne H- 19928 - B hills H - Server H
	Annale (
	and an and an an an an an an an an
	Andrew Sold State of

NT Access includes a time and attendance feature to allow administrator to define timetables, shifts, schedules, and holiday settings. It provides compact and easy-to-use report and In/Out board features.

100			
	and the second s	and the second second	
1 marcade 10	1.00		
to more juit	Contraction of the	links have	an instantion and by

The system controls up to 400 doors and allows integration with various database systems, event monitoring, interlock, linkage, passage mode, firstcard opening, multi-card opening, visual map, T&A management and reporting features.

Features and Applications

Embedded Internal Biometric Identification:

The FR Series readers transmit fingerprint templates to inBIO via RS485 that matches fingerprints with templates stored in the database. Wiegand inputs are also provided for traditional RFID readers.

Communication:

The access controllers can be easily integrated into your network and support both TCP/IP and RS-485 communication. The auto-discovery tool can manage the setting and modification of network parameters in a fast and efficient manner.

Capacity:

The system supports up to 3000 fingerprint templates, 30,000 badge users and stores up to 100,000 events and transactions. Data is preserved if there is power outage. Controller can continue operating if network connection is interrupted.

Cost Efficient Management:

New controller features allows you to remotely upgrade firmware of systems out in the field, ensuring that you can manage and expand your investment value without any complex third party tools.

Complete Access Control:

Apart from standard access control features for controlling door locks, easily programmable auxiliary relays can be used for additional control and interface to lights, alarms, intrusion detection panels, or even extra locking devices or gate controllers.

Options:

Three different sizes of controllers can suit various project needs and reduce the cost of required floorspace. 1-way and 2-way models can be mixed and matched in optimized system architecture.

1		1	l
			E
Ľ.,			
		10	in a

Built-in Advanced

Access Control Functions: Anti-passback, First-Card opening, Multi-Card opening, Duress Password Entry, and Auxiliary input/output linkages are built into controller firmware.

For Software Developers:

Free SDK is available for integrators and OEMs (optional Push SDK for Real-Time environments) to integrate the controller with their own or existing security or personnel management applications. Upon demand, NT Access can customize firmware to meet any customer requirements.

Some Current Customers

Are you paying too much for your access control cards? **S**ALTO Payton Access

 TIME MANAGEMENT • ACCESS CONTROL NORTH TIME & DATA www.ntdltd.com

Northern Ireland's Largest ID card supplier

Convergys is a world leader in customer experience outsourcing, employing over 120,000 people across the World. Our Agents look after billions of interactions on behalf of our clients customers each year, making the physical security of our sites and professionalism of our people high up on the agenda.

We have been using NTD for a number of years as they supply a number of our European sites with access control cards, ID consumables, and ID card printers to produce ID for all of our 8000+ staff. We have confidence in their products and professionalism.

NTD offer exceptional value for money making every effort to ensure that we stay within our budget. Nothing seems to be too much trouble and we are impressed with their speed of delivery and quality of service.

Barry O'Riordan

Convergys Regional Facilities Manager, Northern Europe

Over 2,000 customers

Accessories

Display cards safely and comfortably for easy identification

See how much you could be saving and speak to us today!

CONVERGYS

Enterprise Crescent, Ballinderry Road Industrial Estate, Lisburn, BT28 2BP, Northern Ireland Tel: +44 (0) 2892 604000 E-mail: info@ntdltd.com

www.ntdltd.com

© Copyright 2018. NT Access Inc. NT Access Logo is a registered trademark of NT Access or a related company. All other product and company names mentioned are used for identification purposes only and may be the trademarks of their respective owners. All specifications are subject to change without notice. All rights reserved.

